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SUMMARY 

A finite element method for the analysis of two-layer density flows is presented in this paper. The standard 
Galerkin method based on linear interpolation functions is used to yield discrete spatial variables. For 
numerical integration in time, an explicit two-step selective lumping method is used. Here it is applied to a 
flow analysis of Ishikari Bay, at the mouth of Ishikari River. This case demonstrates a procedure that yields a 
numerically stable solution. 
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INTRODUCTION 

The tide marks for many of the estuaries along the Japan Sea coast are quite narrow. In such 
estuaries, there is incomplete mixing of salt and fresh water. They are classified as fully stratified 
estuaries. These waters always require two-layer flow analyses. 

Recently a number of finite element methods have been applied to analyse shallow water 
equations. The analysis may be divided into three groups: steady flow, 
and unsteady flow There are several papers which discuss multiple-level flow 
analysis.22323 However, in practice, there are many problems which can be analysed by a two-layer 
flow model. This paper describes unsteady two-layer flows using the finite element method. An 
explicit two-step selective lumping method is used as the time marching scheme. This scheme, a 
modified two-step Lax-Wendroff method, has been extensively investigated by Kawahara et aLZ4 
The advantage of using the method is that core store and computation time can be saved. Linear 
functions of the triangular finite element are adopted as interpolation functions for both velocities 
and water elevations. 

The method described here is applied to a flow analysis of Ishikari Bay including the estuary of 
the Ishikari River located in western Hokkaido in the northern part of Japan. Generally, it is 
impossible to obtain a steady flow solution whenever the boundary conditions are not sufficiently 
given. In actual cases, however, it is seldom that boundary conditions are adequately given because 
of a lack of observed data. Here, the procedure for adjusting the flow demonstrates a way to 
overcome such shortcomings. 

quasi-steady 
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BASIC EQUATIONS 

The basic equations governing two-layer density flow can be derived from the three-dimensional 
Navier-Stokes equations, in a manner similar to that used in the shallow water theory, assuming 
the hydrostatic pressure distribution and integrating these equations over the depth of each layer. 
Throughout this paper, indicia1 notation and the usual summation convention are used, and the 
notation, ( ) , i  means partial differentiation with respect to co-ordinate xi. The equations of motion 
and continuity may be written for the upper layer, 

(1) 
1 

p"H" Uy + U7U:j+gq, i  + F E J ~ U ) ' - A ' ' ( U ~ , ~ +  U y , i ) , j - - ( ~ p - ~ y ) = O  

f j  + (H" Uy) , i  + (H'Uf),i = 0 

and for the lower layer, 

- d + (H'Uf), i  = 0 (4) 
where, referring to Figure 1, U i  indicates velocity components, q represents surface water 
elevations, d represents interface water elevations, g, p ,  F and A denote gravity acceleration, water 
density, Coriolis parameter and coefficient of eddy kinematic viscosity, respectively, and cij  

indicates the two-dimensional permutation symbol; cl' = - c21 = 1, d1 = 2' = 0. 
Superscripts u and 1 denote upper and lower layers, respectively. Unless otherwise stated, Latin 

indices represent the numbers, 1 and 2. 
The letter H designates layer thicknesses, for example 

H" = q + d, HI= h - d  (5 )  

T? = k~p,Wi(WjWj)"' (6) 
TYU = kip"(UY - u;)((uy - U;)(uy - Uj))"2 

T$ = kip'(UY - u;)( (uy - Uj)( u; - Uj))'/' 

T: and T; denote shearing stress components at the surface and at the bottom of each layer: 

(7) 

nZ 1 I /HU UYrO" 
- interface 

Figure 1. Geometrical definition of two-layer flow 
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za‘ = k~p11J~(U~lJj )1/2 (8) 

where k,Z, k: and k t  represent friction coefficients at the surface, at the interface and at the bottom, 
respectively. pa is air density and Wi denotes the wind velocity component. The boundary 
conditions are, on the upper layer boundary, S”, 

uy= lJy on Ss 

qy=A”(U; ,+  uYJnj=di on SU, 

v = 4  on SU, (1 1) 

where nj  is a unit normal to the boundary surface and a superposed circumflex ( * )  denotes the 
prescribed value on the boundary. On the lower layer boundary, S’, similar conditions are imposed. 

FINITE ELEMENT FORMULATION 

The domain to be analysed is idealized to consist of subdomains called finite elements. The values 
of U ,  d and q at the nodes are taken as field variables. Applying the conventional finite element 
procedure, equations (1)-(4) are transformed to a set of non-linear simultaneous equations as 
follows: 

M,nO:i + K,,kjUijU;i + g B , , i ~ ,  + M,,FdiU:j + CmjniUi j  - N,TY = 0 

MmnGn + Pmnki((qn + d n ) u b  f (hn - dn)u:i)  = 

(12) 

(1 3) 

where 

where 0, denotes an interpolation function and 6, represents the Kronecker delta. In this paper, 
linear interpolation functions based on the three-node triangular element are employed. 

For numerical integration in time, an explicit two-step selective lumping method” is adopted. 
Applying this procedure, which consists of two steps, to equations (1 2)-( 15), the following relations 
are obtained: 
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For the first step, 

At 
2 MmnU:in+112 = M U"." - -(KmnkjU,Uj"U:i" + gBmniv; mn ni  

+ M,,,Ft"U,"j" + CmjniU;; - N,TY") 

where the superscript n indicates the value at the nth time step and Mmn denotes the lumped 
coefficient. is defined as follows: 

&Irnn = eMmn + (1 - e ) ~ , ,  (26) 

where e represents the selective lumping parameter. 

APPLICATION TO ISHIKARI BAY 

Ishikari Bay is located in western Hokkaido on the Sea of Japan (Figure 2). The Ishikari River, one 
of the largest rivers of Japan, flows into this bay. The narrow tidal range in the bay, no more than 
30cm, results in a salt-wedge in the estuary classified as a 'weak mixing' type. Observations show 
that this estuary has both salt water and fresh water strata. In the dry season the tip of the salt- 
wedge may intrude upstream more than 10 km from the river Therefore, in order to 
analyse the flow phenomena in this area, especially in the neighbourhood of the river mouth, i t  is 
necessary to apply to two-layer flow analysis. 

Steady flow is calculated taking into account flow patterns in this coastal sea. The finite element 
idealization is illustrated in Figure 3. The scale of the selected domain is about 17 km from north to 
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Sea of 
Okhotsk 

Hokkaido 

o l  
Figure 2. Location 

south, and about 10 km from east to west. The total number of finite elements is 1024 and the total 
number of nodal points is 576 for each layer. 

After several trials, boundary conditions were determined as shown in Table I and Figure 4. 
Physical constants and computational data are presented in Table 11. Under such conditions, 
computation was carried out up to 1800 loops. 

Figure 5 shows the time history curves of U,  q and d at the selected points. However, it is difficult 
to say that this result is in a steady state because the water elevations q and d are fluctuating. So, to 
get a steady state solution, better means of approach was considered as discussed later. Finally, by 
means of this approach, we succeeded in getting a steady state solution as shown in Figure 8. Next, 
a procedure adopted in this study is explained in detail. 

Reflecting on the above result, this phenomenon is attributed to inadequate boundary 
conditions. Because of a lack of observed data, it is impossible to specify the interface boundary 
conditions on the offshore boundary. Accordingly, it is not possible to maintain a balance between 
inflow and outflow in the area analysed in the sense of steady flow. Thus, the water elevations q and 
d are supposed to decrease and increase in order to maintain the steady state, because the inflow 
discharge must be increasing. From the above discussions, it is necessary to introduce a procedure 
for adjusting the inflow. 

Adjustment of inflow 

adjusted must be estimated. The following estimation method is proposed: 

arbitrary time and AQ be the adjusted inflow, then the following relation is obtained: 

In order to obtain a steady flow solution by means of adjusting the inflow, the flow quantity to be 

Let Q,, be inflow per unit time to maintain a steady flow state, Q be inflow per unit time at an 

(27) Q,, = Q + AQ 
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Figure 3. Finite element idealization 
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Table I. Boundary conditions 
~~ 

Boundary conditions 

Location Water elevations Velocities 
Figure 4 % d(m) u (m/s) Remarks 

0-12 (at A) 
0.14 (at B) Interpolated 

ABCDEF t] + d 0.10 (at C) U' 0.25 (at C) linearly 
0.14 (at D) between 
0.04 (at E) 0.25 (at E) locations 
044 (at F) 

0.123 (at A) 

0.114 (at F) 
U" 0.15 River discharge 

U' 0.0 (see Reference 25) 
GH t ] + d  3.5 = 300 m3/s 

FG v,u 0.0 U" and - 
HA u!l 0.0 component to 

- Normal velocity 

shoreline 

lshikari Bay 

Figure 4. Boundary conditions for analysis of Ishikari Bay (cf. Table I) 
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Table 11. Physical constants and computational data 

Density of upper layer 

Density of lower layer 
Coriolis parameter F = 9.974 x l/s 
Friction coefficient at 

Friction coefficient at 

Coefficient of eddy 

Selective lumping factor 
Time increment At = 6.0s 

p" = 1.0 
x lo3 kg/m3 

p1 = 1,024 x lo3 kg/m3 

the interface 

the bottom 

kinematic viscosity A = 10.0m2/s 

k$ = 0.001 m/s 

k i  = 0.0026 m/s 

e = 0.0 

J- No. 1 
I 

Figure 5. Time history curves of U; (at J-No. 460), q (at J-No. 1) and d (at J-No. 460) (original) 

AQ = r j ~  

where r j  is the rate of surface water elevation change per unit time, and A is the total area of the 
domain to be analysed (Figure 6). From the time history curve of q,  by reading Aq and At, r j  may be 
obtained as  follows: 

. Av q=-  
At 

Because the fluid in the lower layer flows into the domain only across the boundary AC, Q can be 
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Figure 6. Water elevation change 

calculated from the following equation: 
C 

Q =  H'U'dl 
A 

Using this method, the inflow discharge, i.e. the velocities of the lower layer on AC, can be adjusted. 

First modification 

From the time history curve of the preceding trial (Figure 5) ,  Aq and At can be read, then 3 is 
obtained, i.e. Aqat = 0.32 m, At = 1800 loops x 6 s = 10800 s. 

Therefore, the rate of surface water elevation change per unit time at nodal point No. 1 
is tiatl = Aqa,,/At = 2.963 x lo-' m/s. As an average for the whole region, the following value is 
assumed: = 3 x 10- m/s. Hence, Q,JQ = 1-105. So, the prescribed values of velocities of the lower 
layer on AC should be increased by 10 per cent. 

As the initial condition, the result of loop No. 1100 of the preceding trial was used. As a result, 
Figure 7 shows that the water elevations q and d are considerably improved compared with the 
previous computation. However, if these still fluctuate slightly, one more adjustment might be 
necessary. 
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Figure 7. Time history curves of U; ,  q and d (1st modification) 

J-No.1 r 
J - NO. 460 \ 

---- :Original 
-.-.-: 1st modification 
-: 2nd 

Figure 8. Time history curves of U!,  q and d (2nd modification) 
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Second modification 

Similarly, from the time history curve (Figure 7), Aq, At snf 4 are obtained, i.e. Aqal = 0.02643 m, 
At = 825 loops x 6 s = 4950 s. Therefore, the rate of surface water elevation change per unit time at 
nodal point No. 1 is dall  = Aqall/At = 5.34 x 10-6m/s. As an average for the whole region, the 
following value is assumed: f i  = 5 x 10-6m/s. Hence, QTt/Q = 1.016. Finally, the quantity 
adjustment should be 1.6 per cent above the first modification. As the initial condition, similar to 
the first modification, the result of loop No. 1100 of the original trial was used. Computation was 
carried out for more than 1500 loops under such conditions. Then, as shown in Figure 8, the water 
elevations q and d as well as the velocities can be used as a steady flow state. 

NUMERICAL RESULTS 

Figures 9 and 10 represent the computed velocities of the upper and lower layers. Figure 11 shows 
the computed velocities of the upper layer (solid lines) in the neighbourhood of the estuary and the 
surface velocities observed by Fukushima et aLz6 (dotted lines). The velocity along the centre of 
flow is shown in Figure 12. They agree with each other very well. Figure 13 shows the computed 
velocities of the lower layer in the neighbourhood of the estuary. From these results, it can be seen 
that the flow of the upper layer and that of the lower layer are distinctly different, especially in the 
neighbourhood of the estuary. Figure 14 shows the distribution of the thickness of the upper layer, 
i.e. yl + d. It shows that the upper layer decreases in thickness at the inlet and spreads over the bay in 
a very thin layer. Figure 15 is a comparison of the computed thicknesses of fresh water with the 
observed ones” in the neighbourhood of the estuary. The abscissa indicates the distance along the 
centre of flow from the inlet in the offshore direction, and the ordinate shows the thickness of fresh 
water, i.e. q + d,  and river discharge is taken as a parameter. The computed result agrees with the 
observed data comparatively well. 

CONCLUSION 

The finite element method has been applied to two-layer density flow analysis. As a time marching 
scheme, the explicit two-step selective lumping scheme was used. The present method is applied to 
the flow analysis of Ishikari Bay. 

After several trials, it can be concluded that the numerical stability of the analysis depends 
significantly on combinations of the boundary conditions on the upper and lower layers. A method 

1.0 
; 0.8 
E 0.6 
. 
v 

20.4 .- 
0 
0 - 
0.2 

0.1 
0 1 2 3 4  5 

et al.(19711) 

Distance along the center of flow (km) 

Figure 12. Comparison of computed velocity with observed surface velocities in the neighbourhood of the estuary 
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Figure 14. Distribution of thickness of upper layer (q  + d )  

al. (1971)) 

Figure 15. Comparison of computed thicknesses of fresh water with observed ones in the neighbourhood of the estuary 

to obtain a stable solution is found by the combination, i.e. prescribing the thickness of the upper 
layer on the upper boundary and specifying the velocities on the lower boundary, and by the 
procedure of inflow adjustment. The computed results by the present method are in good 
agreement with the observed ones. 
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